Effects of new antiepileptic drugs and progabide on the mitogen-induced proliferative activity of mouse splenocytes

Agnieszka Basta-Kaim¹, Bogus³awa Budziszewska¹, Monika Leœkiewicz¹, Marta Kubera¹, Grzegorz Jag³a²,³, Wojciech Nowak², Stanis³aw J. Czuczwar⁴, W³adys³aw Lasoñ¹

¹Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smêtna 12, PL 31-343 Kraków, Poland
²Department of Anatomy, Jagiellonian University, Medical College, Kopernika 12, PL 31-034 Kraków, Poland
³Department of Pain Treatment and Palliative Care, Jagiellonian University, Medical College, Šniadeckich 10, PL 31-531 Kraków, Poland
⁴Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090 Lublin, Poland

Correspondence: W³adys³aw Lasoñ, e-mail: lason@if-pan.krakow.pl

Abstract:
Classical antiepileptic drugs are known to affect immune system activity, although the effects of new generation anticonvulsants on T- and B-cell-mediated immunity remain unknown. Therefore, in the present study, we compared a selection of new antiepileptic drugs with classical ones in terms of their effects on the proliferative activity of lymphocytes stimulated by concanavalin A (Con A) and lipopolysaccharide (LPS). Felbamate (3 × 10⁻⁶ – 10⁻⁴ M) was the most potent in inhibiting [³H]-thymidine incorporation in C57BL/6 mouse spleen cells stimulated by Con A and LPS. Treatment of the cells with stiripentol (3 × 10⁻⁵ and 10⁻⁴ M) and loreclezole (10⁻⁴ M) suppressed the proliferative activity of splenocytes both after Con A and LPS stimulation. Tiagabine (3 × 10⁻⁵ M and 10⁻⁴ M) inhibited the Con A-induced cell proliferation, whereas the effect of LPS was attenuated only by the highest concentration of this drug (10⁻⁴ M). Progabide showed immunosuppressive effects at concentrations of 3 × 10⁻⁵ and 10⁻⁴ M or only 10⁻⁴ M after LPS or Con A stimulation, respectively. No effect on the immune parameters was observed after lamotrigine treatment. On the other hand, the Con A-induced proliferation of splenocytes was enhanced by carbamazepine (10⁻⁵ – 10⁻⁴ M) and sodium valproate (5 × 10⁻⁴ – 3 × 10⁻³ M). Neither carbamazepine nor sodium valproate affected the LPS-induced proliferation. These data indicate that some new antiepileptic drugs, especially felbamate at pharmacological concentrations, may suppress the mitogen-stimulated proliferative activity of mouse splenocytes. In contrast, two classical anticonvulsants (carbamazepine and sodium valproate) stimulated T-cell-mediated immunity. The above differences in the effects of particular antiepileptic drugs on the immune response may play roles in both their therapeutic efficiency and undesired effects.

Key words: antiepileptic drugs, mitogens, proliferative activity of splenocytes